Zur Kenntnis der Doppelkarbide in den Systemen: U-Cr-C, U-Mo-C und U-W-C

Von

H. Nowotny, R. Kieffer, F. Benesovsky und E. Laube

Aus dem Institut für Physikalische Chemie der Technischen Hochschule Wien und der Metallwerk Plansee A. G. Reutte, Tirol

Mit 1 Abbildung

(Eingegangen am 13. September 1958)

Für die isotypen Doppelkarbide UCrC₂, UMoC₂ und UWC₂ wird auf Grund von Einkristall-Aufnahmen ein Strukturvorschlag hergeleitet. Das UCrC₂-Gitter vermittelt bezüglich der auftretenden Metallschichten zwischen dem Bauprinzip bei Karbiden und jenem bei Disiliziden. Der Kohlenstoff zeigt Paarbildung. Gitterkonstanten und Parameter werden angegeben.

In den Karbidsystemen des Urans mit hochschmelzenden Metallen wurde beim Studium der Schnitte: UC—Cr₃C₂, UC—Mo₂C und UC—WC jeweils eine ternäre Kristallart mit annähernd gleichem Debyeogramm aufgefunden¹. Während für die Mo- und W-haltige Kristallart Isotypie außer Zweifel stand, war eine Strukturgleichheit mit der Cr-haltigen Phase zwar wahrscheinlich, aber nicht völlig gesichert. In der Folge wurde an Proben gemäß einer Zusammensetzung UWC₂ ein homogenes Gefüge beobachtet² und schließlich gelang es mittels neuer Ansätze UCrC₂-Einkristalle herzustellen.

Preßlinge einer Mischung von UC—Cr₃C₂ (molares Verhältnis 1:1) wurden unter Schutzgas in einem Schiffchen aus Sinterzirkonoxyd aufgeschmolzen (Wolfram-Kurzschlußofen). Nachdem der Preßling zu schmelzen begann (etwa 1800° C) und Blasen warf, wurde der Ofen auf tiefere Temperatur gebracht und sodann nach weiteren 10 Min. abgeschal-

¹ H. Nowotny, R. Kieffer, F. Benesovsky und E. Laube, Mh. Chem. **88**, 336 (1957). Wir benützen hier die Gelegenheit, um auf den Druckfehler bei der Wiedergabe der Formel aufmerksam zu machen. Es sollte heißen, S. 343: $Mo_{0,4}U_{0,6}C$ bzw. $W_{0,4-0,6}U_{0,6-0,4}C$.

² H. Nowotny, R. Kieffer und F. Benesovsky, Rev. Met. 55, 453 (1958).

tet. Der Regulus wurde vom anhaftenden ZrO_2 befreit und die erstarrten Blasen vorsichtig aufgebrochen. In den Lunkern fanden sich gut ausgebildete Kriställchen in Form dünner Plättchen und Nadeln vor. Die Matrix selbst war entsprechend dem gewählten Einsatz heterogen und enthielt neben UCrC₂ noch Cr₃C₂ — von Spuren UO₂ abgesehen.

Die Struktur von UCrC₂

Eine DK-Aufnahme um die Nadelachse (Cu-K α - bzw. Cr-K α -Strahlung) lieferte bereits die wesentlichen Daten für Elementarzelle und Raumgruppe. Die Auswertung der Aufnahmen, einschließlich von Debyeogrammen, führte auf ein orthorhombisches Gitter mit nachstehenden Achsenlängen (Tab. 1):

Tabelle 1. Abmessungen der Elementarzellen von UCrC₂ bzw. Cr_3C_2 in $k X \cdot E$.

	UCrC ₂	$\mathrm{Cr}_{3}\mathrm{C}_{2}$
(Nadelachse)	$a=5,42_2$	5,52
	$b = 3,22_5$	$2,82_{1}$
	$c = 10,61_5$	11,46

Mit den Parametern¹:

$x_{\mathbf{U}}$		0,083	y_{U}	$= \frac{1}{4}$	z_{U}	=	0,143
x_{Cr}		0,350	y_{Cr}	$= \frac{1}{4}$	$z_{\rm Cr}$	-	0,860
$x_{\rm C~I}$	=~	0,50	yc 1	$= \frac{1}{4}$	$z_{\rm C~I}$	-	0,04
$x_{\rm C~II}$	-	0,72	$y_{\rm C~II}$	$1 = \frac{1}{4}$	$z_{\rm C~II}$	=~	0,00

wird der Äquator einer DK-Aufnahme um [010] hinsichtlich der Intensitäten gut wiedergegeben (Tab. 2). Sämtliche Rechnungen wurden ohne Absorptionsfaktor durchgeführt.

¹ Die Kohlenstoff-Parameter können hier naturgemäß nicht genau bestimmt werden.

Die systematischen Auslöschungen: (hkl) und (hOl) in allen Ordnungen, (hkO) nur mit h = 2 n und (Okl) nur mit k + l = 2 n vorhanden, sind mit dem Raumsystem D_{2h}^{16} vereinbar. Auf Grund einer pyknometrisch ermittelten Dichte von 11,2 g/ccm (interpoliert 11,3 g/ccm) findet man für Z = 3,99, also vier Formelgewichte. Damit wird sogleich eine Verwandtschaft mit $Cr_3C_2^3$ erkennbar, dessen orthorhombische Zelle ähnliche Abmessungen bei gleicher Raumgruppe besitzt (siehe Tab. 1). Tatsächlich erfolgt bei Ersatz von zwei Chromatomen durch ein Uranatom aus den Radien:

$$\left(rac{R_{
m U}}{R_{
m Cr}}
ight)^{3} = \left(rac{1,57}{1,28}
ight)^{3} \sim 2,$$

³ K. Hellström und A. Westgren, Svensk Kem. Tidskr. 45, 141 (1933). Monatshefte für Chemie, Bd. 89/6 46

gemäß $Cr(Cr_2)C_2$, sofort die Formel $CrUC_2$ bei gleicher Anzahl von Formelgewichten.

Die Zelle von UCrC₂ weist im übrigen eine pseudohexagonale Symmetrie auf: $a/b = 1,68 \sim 1/3$, welche bei den isotypen Phasen UMoC₂ und UWC₂ noch deutlicher zum Ausdruck kommt. Für die Parameterbestimmung — jeweils in den Lagen 4 c — war die Tatsache maßgebend, daß die Positionen der schweren Uranatome weitgehend unbeeinflußt ermittelt werden können. Aus den zufälligen Auslöschungen der Interferenzen (h05) für ungerade h und (30l) für ungerade l ließen sich $x_{\rm U}$ und $z_{\rm U}$ sofort näherungsweise angeben. Die Lage der Chromatome wurde aus dem Vergleich mit der isotypen UWC₂-Phase (siehe weiter unten) einerseits, nährungsweise aber auch aus der pseudohexagonalen Symmetrie erschlossen. Die Kohlenstoffatome waren damit zwischen zwei pseudohexagonalen, in Tetraederlücken folgenden Metallnetzen festgelegt. Das Cr₃C₂-Gitter ist durch Kohlenstoff-Zickzack-Ketten charakterisiert; diese gehen beim Austausch von zwei Cr-Atomen durch ein U-Atom in C₂-Paare über.

(hkl)	$\sin^2 \vartheta \cdot 10^3$ gef.	sin² ϑ • 10³ ber.	Int. geschätzt	Int. berechnet
(002)		21,0	s	0.4
(101)	25.0	25.4	m	4.2
(102)	41,1	41,1	ms	1,9
(103)	67,9	67,4	\mathbf{mst}	7,0
(200)	80,7	80,5	s	1,2
(004)	055	(84,1		(6,5
(201)	80,0	85,8	st	18,4
(202)		101,5		0,1
(104)	104,9	104,2	ss	0,25
(203)	127,3	127,8	ms	1,8
(105)		151,5		0,2
(204)	165,4	164,6	ms	2,0
(301)		186,4		0,1
(006)	189,4	189,2	s	1,6
(302)	201,9	202,2	m	4,1
(106)	210,4	209,3	ss — s	0,3
(205)	211,8	211,9	\mathbf{mst}	5,0
(303)		228,5		0,1
(304)	265,3	265,3	ss — s	0,65
(206)		269,7	SSS	0,25
(107)	279,2	277,6	m - mst	1,9
(305)		312,6		
(400)	322,4	322,1	ss — s	0,5
(401)	327,7	327,3	\mathbf{ms}	1,0
	1	1	ł	1

Tabelle 2. Äquator einer DK-Aufnahme von CrUC₂, Drehachse [010], Cu-Kα-Strahlung

-

-

(hkl)	$\sin^2 \vartheta \cdot 10^3$	$\sin^2 \vartheta \cdot 10^3$	Int.	Int.
	ger.	ber.	geschatzt	Derechnet
(008)		(336.3	l.	(0.8
(207)	337,2	338.3	ms — m	
(402)		343.1		0.1
(108)	357.2	356.4	s	0.2
(403))	950.0	(369,4		(0.25
(306)	370,6	370,4	ms	1.3
(404)	406,3	406,2	s	0,9
(208)	418,3	416,8	ss	0,1
(307)		438,7	i —	0,1
(109)	446,0	445,8	ss	0,1
(405)	454,7	453,5	s	1,1
(209)		(506, 2		(2,0
(501)	508,7	508,5	m	$\{0,7$
(406)J		(511,3		0,25
(308)	517,4	517,5	m	1,0
(502)	526.2	524,3	s	{0,9
(0010)	01,0,1	(525, 5	Ŭ	[1,1
(1010)	550.5	1545,6	s +	
(503)		1550,6		1,0
(407)	579,9	579,6	SSSS	
(504)	588,5	587,4	SSS	0,15
(2010)	607,4	606,0	ss	0,4
(309)		606,9		. —
(000)	·	034,0	-	(0.7
(1011)[657,8	1050,0	m	
(408)]	602.9	602 5		0.6
(3010)	708 1	706.7	20 9	0.3
(2010)	100,1	(716.4] 5 –	(0.4
(600)	725,4	724.7	s	10.7
(601)		729.9		
(602)	750.0	(745.6		(0,1
(409)	750,0	747,8	ms	1,1
(0012)	769.0	(756,7		ſ0,1
(507)	102,0	760,8	ms	1,7
(603)		772,0		
(1012)	779,6	776,8	s	0,3
(604)	809,2	808,8	m	1,4
(3011)		817,1		
(2012)	839.7	<i>{</i> 837,2	s +	$\{0,05\}$
(508))		1839,6	· · ·	10,8
(4010)	848,6	847,6	s +	1,0
(605)	000.0	856,1		
(1013)	908,6	908,2	m	1,1
(000)	912,0 090 c	913,9	s —	1,3
(3019)	728,0 927 2	929,0	s	0,2
(3012)	997,9 958 0	957.9	5U	4,3 0 9
(2013)	968.0	968 2	3 et	ບ,ວ ຮຸກ
(2010)	000,0	000,2	00 D	5,0

46*

Die Struktur kann, was die Metallatome betrifft, durch ein hexagonal dichtes Bauelement (U—Cr) dargestellt werden, das eine wechselnde Abfolge nach Dreier- und Zweierlücken aufweist. Die Kohlenstoffpaare

befinden sich jeweils --- wie schon erwähnt — in der Dreierfolge (vgl. Abb. 1). Der Rhythmus kann als: AB_ZCD_ZA symbolisiert werden, wobei AB_Z und CD_Z eine Zweierlücken-Besetzung bedeutet (wie bei Disilizid-Typen⁴), während $B_Z C$ und $D_Z A$ eine Dreierlücken-Besetzung (wie bei dichter Packung) darstellt. Da in diesem Paket die Kohlenstoffpaare liegen, entsteht auf diese Weise ein Strukturtyp, welcher zwischen den Karbiden und den Disiliziden der hochschmelzenden Metalle vermittelt. Durch die enge Verwandtschaft zum Cr3C2 mit C-C-Ketten erhält man überdies eine Verknüpfung zu den Monoboriden. Die Abstände sind: Cr-C = 2.09 (2) und 2,08; U--C = 2,46 sowie U--Cr = 2,84 Å. Für C-C folgt dann ein Abstand von 1,27 Å.

Auf einer Weißenberg-Aufnahme wird auch (002) mit dem entsprechenden Intensitätsverhältnis zu den übrigen (00*l*) gefunden. Wegen der

Nadelform und der starken Absorption sind einige Reflexe ungleich geschwächt. Die Flächen parallel zu (00l) sind länglich, jene parallel zu (h0l)

(hkl)	Int. geschätzt	Int. berechnet	(hkl)	Int: geschätzt	Int. berechnet
$(002) \\ (101) \\ (102) \\ (011) \\ (103) \\ (200)$		0,6 5,3 1,9 4,5 5,4 0,8	(302) (115) (106) (205) (214) (303)	$egin{array}{c} \mathrm{ms} \ \mathrm{ss} \ \mathrm{ms} \ \mathrm{s} + \ - \ \end{array}$	$1,9 \\ 0,15 \\ \{0,15 \\ 2,2 \\ 3,4 \\ 0,1 \end{cases}$

Tabelle 3. Pulveraufnahme von $UCrC_2$ aus Probe (Cr₃C₂ 20 Mol%, UC 80 Mol%) Cu-K α -Strahlung

⁴ Vgl. etwa H. Nowotny, Radex-Rdsch. 41 (1953).

	Int.	Int.		Int.	Int.
(hkl)	geschätzt	berechnet	(hkl)	geschätzt	berechnet
(111))		(2.5	(020)	88	1.5
(004)	s. d	$\{0,4\}$	(311)		(1.6
(201)	,	0,6	(022)	s +	{
(112)	\mathbf{st} +	12,4	(121)	s	0,6
(202)	—		(304)]	170.0	∫0,25
(104)	88	∫0,15	(116)∫	1115	1,85 (
(013)J	55	10,7	(215)		(0,75)
(113)	\mathbf{ms}	3,7	(206)	s	$\left\{ 0,1\right.$
(203)	s	1,0	(122)J		(0,3)
(210)	s	1,9	(107)	s	0,7
(211)	s	1,6	(313)	s +	2,25
(105)		0,1	(123)	s	1,0
(212)	s	$\{0, 15\}$	(220)	ss	0,25
(114))		(1,4	(017)]		
(204)	s	10,5	(024);	ms	1,25
(213)		(0,25	(221)		1,45
(310)	—	(0 77	(305)]		(—
(006)[s +	10,75			
(019))		(1,4			
	 ffug	-			

mehr punktförmig abgebildet. Die Übereinstimmung der ersten Schichtlinie war befriedigend, von der Wiedergabe einer Tabelle wird jedoch abgesehen. Die Pulveraufnahme, die frei von Habituseffekten ist, läßt sich durch die Parameter hinsichtlich der Intensitäten einwandfrei wiedergeben.

Die Phasen UMoC₂ und UWC₂

Pulveraufnahmen dieser Kristallarten lassen sich nunmehr vollständig indizieren, wenn man eine analoge Zelle zugrunde legt (Tab. 4).

Tabelle 4. Gitterkonstanten von UMoC₂ und UWC₂ in $k X \cdot E$.

		$\rm UMoC_2$	UWC_2
a	_	$5,61_{2}$	5,62
b	=	$3,22_{5}$	$3,24_{5}$
c	=	$10,9_{5}$	$10,9_{5}$
a/i	b =	1,72	1,73

Wie daraus ersichtlich, liegt das Verhältnis a/b bei der W-haltigen Phase fast genau bei $\sqrt{3}$. Mit einer pyknometrisch bestimmten Dichte von 14,6 g/ccm⁵ errechnet sich für $Z = 3.94 \approx 4$ Formelgewichte.

⁵ Die Interpolation liefert 14,7 g/ccm.

Der homogene Bereich bei UWC₂ kann mit teilweisem Austausch von Uran durch Wolfram erklärt werden, obwohl auch die Besetzung von C-Atomen an Stelle von C₂-Paaren, entsprechend UMeC_{2-X} möglich ist. C₂-Paare treten im übrigen bei UC₂ und anderen Karbiden vom MeC₂-Typ auf.

Eine sehr gute Übereinstimmung in den Intensitäten wird hier erreicht für: $x_{\rm W} = 0,40$, während alle übrigen Parameter dieselben sind wie bei UCrC₂. Eine Pulveraufnahme (Tab. 5) beweist dies. Als kürzeste Abstände ergeben sich damit: W—C = 2,04; U—C = 2,48; U—W = 2,87 und C—C = 1,31 Å. Die Werte sind aber, vom Abstand U—W abgesehen, nur eine Näherung. Auf die Ausbildung von Zickzack-Ketten U—Me in Richtung der *b*-Achse sei aufmerksam gemacht.

Tabelle 5. Auswertung von Pulveraufnahmen an $UMoC_2$ und UWC_2 mit Intensitätsberechnung (Cr-K α -Strahlung)

UMoC ₂				UWC ₂			
Index rhombisch	Index hexag.	sin² ϑ · 10³ gef.	sin • 10³ ber.	$\sin^2 \vartheta \cdot 10^3$ gef.	sin² ϑ • 10³ ber.	Int. geschätzt	Int. berechnet
(002)	(0002)		43.6		43.6	_	0.75
(101)	(0001)		52.4		52.3		
(102)			85.1		85.0		
(011)			136.5		135.1		0,2
(103)			139,6		139,5		0,35
(200)	$(10\overline{1}0)$		166,0	165, 4	165, 6	ss	1,3
(004))	(0004)		(174, 4)	175,9	174,4)		(1,3
(201)	$(10\bar{1}1)$	176,5	${176,9}$		176,5	\mathbf{m}	1,6
(111))			178,0		176,5)		3,0
(202)	(1012)	210.4	J209,6	208.9	909.9	m	10,1
(112)	(1012)	210,7	210,7	200,0	205,2	111	(8,2
(104)			215,9		215,8		
(013)			223,7		222,3		-
(203) (113)	(1013)	265,3	1264,1 1265.2	263,7	263,7	s	∫1,6 4,8
(210)			291.6		289.9		
(211)			302,5		300,7		0,2
(105)			314,0		313,9		
(212)			302,5		333,4		
(204) (114)	(1014)	342,2	340,4 341,5	340,5	340,0	SS	1,1 2,0
(301)			384,3		383,4		
(213)			(389,7		387,9		(-
(006)	(0006)	394,3	${392,4}$	394,3	392,4	ss	1,3
(015)			(398, 1)		396,7		l.—
(302)			417,0		416,1		0,15
(106)			433,9		433,8		
$(205) \\ (115) \}$	(1015)	439,1	${ 438,5 \ 439,6 }$	439,1	438,1	S	$\left \begin{array}{c} 4,2\\0,3\end{array}\right $

<u> </u>	UMoC ₂				UWC ₂			
Index rhombisch	Index hexag.	$\sin^2 \vartheta \cdot 10^3$ gef.	$\sin^2 lpha \cdot 10^3$ ber.	sin² ϑ • 10³ gef.	$\sin^2 \vartheta \cdot 10^3$ ber.	Int. geschätzt	Int. berechnet	
(214)		465,1	466,0		462,2			
(303)	_	—	470,5		470,6			
(020)	(1120)	503,5	502,4	496,5	496,8	s	2,5	
(311)	(1121)	510,5	509,9	508,7	507,7	m	3,9	
(022)	$(11\overline{2}2)$		1546,0		540.4		ſ0,15	
(312)Ĵ	(1122)	-	542,6		010,1		0,2	
(304)		554.0	∫554,8	548 8	546,9	88 —	$\int -\kappa$	
(121)		001,0	1554,8	010,0	549,11	20	1	
(206)	$(10\overline{1}6)$	559.2	j558,4	557 5	558.0	m	10,2	
(116) j	(1010)	000,2	1559,5	001,0	000,0	111	15,0	
(215)			564,1		552,3			
(107)		576,5	575,6	574,8	575,5	ss	0,1	
(122)	_		587,5	—	581,8			
(313)	(1123)	597,1	596,1	595,4	594,9	m	7,3	
(123)		641,2	642,0	636,8	636,3	ss	0,2	
(305)			645,9		645,0			
(017)			659,7	—	658,3			
(400)	$(20\overline{2}0)$		∫664,0	662.8	662.4	88	j 1,0	
(220) f	())	668,4	002,0	002,1		10,7	
(314)	$(11\overline{2}4)$		673,4		$\int 671,2$			
(024)	(/	675,9	{676,8	672,6	1	sst	3,7	
(401)	$(20\overline{2}1)$		(674,9		(673,3		2,0	
(221)]]		679,9	679,3				4,5	
(216)	(0.0.0.0)		684,0	682,4	682,2	s	0,2 K	
(008)	(0008)	698,6	697,6					
(207)	(1017)	701,9	1701,3	697,8	697,6	s +		
(117)			(701,2					
(402)	$(20\overline{2}2)$		1707,6		706,0		10,15	
(222)		710.0	1712,0		710.0			
(124)		719,2	718,4	720.2	712,0		0,5	
(108)	(20.52)	109,0	739,1	109,0	139,0	888	10.65	
(403)	(2023)	103,5	766 57	760,5	760,5	\mathbf{st}	10,00	
(306)			765.8		764.0	1	(0.1	
(315)	(1125)	779 3	771.5	769,4	769.3	\mathbf{st}	$\begin{cases} 0,1\\0,7\\ \end{bmatrix} K$	
(410)	(1120)	112,5	789.6		786.6		(0,1	
(410)			800.5		797.5			
(125)	1	817.4	816.4	810.6	810.7	222	0.05	
(217)		011,1	825 7	010,0	823.9			
(412)			833.2		870.0		_	
(404)		838.4	838.4	0.0- 0	0,0,0		13.1	
(224)	$(20\overline{2}4)$	842.3	842.8	837,2	836,8	st -	11.0	
(208)1		0000	1863,6	0.00 1	000.0		(0.55	
(118)	(1018)	863,3	864,7	862,1	863,2	SS	0.8	
(321)			886,7	I —	880,2			
(413)			887,7		884,7		-	

K = Koinzidenz.

	\mathbf{UMoC}_{2}				UWC2			
Index rhombisch	Index hexag.	$\sin^2\vartheta\cdot 10^8$ gef.	sin ² ቶ · 10 ber.	sin² ð · 10³ gef.	sin ² & · 10 ³ ber.	Int. geschätzt	Int. berechnet	
$(026)_{(216)}$	(1126)		1894,8	_	889,2		0,2	
(316) (307)			(891,4 907,5		889,2 906,6		0,1	
(322) (109)		919,3	919,4 924,4	924,3	913,0 924,3	s +	0,1 0,7	
(126) (405)]	(2025)	936 5	936,3 1936,5		930,6 934 9	ant.	∫ 7,0	
$(225)\hat{i}$ (414)	(2020)	000,0	940,9 964,0		961,0		21,0	
(323)			972,9		967,4	_	<u> </u>	

.....